プリント基板材料とアンテナ特性について

井沢昌行*

About an antenna characteristic by materials of a printed board

IZAWA Masayuki*

抄録

電子回路を構成するプリント基板は、汎用性や高周波特性など異なる特性を有する基板 材料が、回路の目的や仕様に応じて使用されている。また近年は、無線通信周波数も高周 波化し波長が短くなることで、アンテナも小さく、プリント基板上に他のプリント配線と 同様に作製・配置出来るようになった。本研究では、異なる基板材料で試作したプリント ダイポールアンテナの特性を実測した。あわせて、マイクロストリップアンテナの小形化 と、プリント基板上で作る八木・宇田アンテナのアンテナ特性について実測し、その傾向 を把握した。

キーワード:プリント基板,プリントダイポールアンテナ,マイクロストリップアンテナ, 八木・宇田アンテナ

1 はじめに

電子回路を構成するプリント基板材料は、一般 的に使用されているガラスエポキシ基板材料のほ かに、高周波特性の優れたフッ素樹脂基板材料や、 高周波回路が小型化できる高誘電率基板材料など 様々なものが開発・販売されている。

また、近年は携帯電話や無線LAN、Bluetoothの ように1GHzを超える周波数帯を利用した無線通 信技術が一般的に使用されてきている。

ー般に周波数が高くなると、その波長は短くな りアンテナのサイズは小さくなる¹⁾。その結果、 プリント基板上にプリント配線と同一工程で作製、 配置することが可能となった。

アンテナは、無線通信を行うためには必要不可 欠なものであり、その種類は極めて多い²⁾。

本研究では、基本的なアンテナ形状であるダイ ポールアンテナを、プリント基板上に作製した

* 埼玉県産業技術総合センター 電子情報技術部

プリントダイポールアンテナ³⁾ や開放形平面回 路共振器の放射損を積極的に利用したマイクロス トリップアンテナ⁴⁾(以下、MSA という。)、 また、ダイポールアンテナに無給電素子の導波器 および反射器を有する、いわゆる八木・宇田アン テナ⁵⁾を試作し、以下のような内容で試作および 測定を行った。

 誘電率、誘電正接の特性が異なるプリント基 板材料でプリントダイポールアンテナを作製し、 それぞれのアンテナ特性を調べた。

② フッ素樹脂基板材料を用いた MSA において、アンテナの小形化にともなうアンテナ特性の変化を調べた。

③ 一般的なプリント基板材料であるガラスエポ キシ基板材料で、プリントダイポールアンテナを 作製し、導波器を設けて八木・宇田アンテナとし たときのアンテナ特性を調べた。

2 実験方法

2.1 プリントダイポールアンテナ

2.1.1 プリントダイポールアンテナの設計

半波長ダイポールアンテナ素子の長さは、自由 空間における波長の1/2に相当する長さであり、 そのときの入力インピーダンスにはリアクタンス 成分がある。入力インピーダンスを純抵抗とする ためには、アンテナの全長を半波長より少し短く する必要があり^の、また、プリントダイポールア ンテナでは基板材料の比誘電率による波長短縮効 果で、その全長はより短くなる。

プリント回路上で伝送路に使用されるマイクロ ストリップライン(以下、MSL という。)や同 軸ケーブルは不平衡伝送回路であり、ダイポール アンテナは平衡伝送回路である。直接接続すると アンテナが平衡励振されず本来の動作が阻害され てしまうため⁷⁰、平衡不平衡変換回路のバラン

(Balun: Balance-unbalance) が必要となる。

バランには多くの種類がある⁸⁹⁹が、今回は 1/4 波長の伝送線路長でバランとして動作する平行平 板線路¹⁰⁹を用いた。1/4 波長平行平板線路の長さ は、基板材料の比誘電率による波長短縮効果を考 慮する必要がある。

アンテナの入力インピーダンスと回路のインピ ーダンスが整合していない場合は、定在波が立 ち、伝送損も発生する。そのため整合回路が必要 となる。インピーダンス整合回路には、コイルと コンデンサを用いる整合回路やスタブ整合回路、 1/4 波長整合回路など¹¹⁾がある。

今回は、バランで使用する平行平板線路が 1/4 波長の長さであるため、1/4 波長インピーダンス 変換器とし整合回路に使用した。1/4 波長インピ ーダンス変換器の入出力インピーダンスと伝送線 路の特性インピーダンスは次の関係がある¹²⁾。

 $Z_{in} \cdot Z_{out} = Z_0^2$

 Z_{in} :入力インピーダンス Z_{out} :出力インピーダンス Z_0 :伝送線路の特性インピーダンス

よって、伝送線路長が 1/4 波長である平行平板 線路の特性インピーダンスを調整することで、イ ンピーダンス整合が可能となる。以上、各部の役 割について図1に示す。

図1 プリントダイポールアンテナ

2.1.2 プリント基板材料

使用した 3 種類の基板材料の特性を表 1 に示 す。なお、基板厚を 1.6mm 程度に揃えるため、 高誘電率 PPO 基板については、3枚重ねて 1.5mm 程度の厚みとし、試作に用いた。

表1 使用基板材料(1MHz、カタログ値)

基板材料	基板厚	比誘電率	誘電正接	銅箔厚
ガラスエポキシ	1.6mm	4.5 \sim 4.9	$0.013 \\ \sim 0.020$	35µm
フッ素樹脂	1.6mm	2.62	0.0005	35µm
高誘電率 PPO	0.5mm	10.2 ~ 10.6	$0.0050 \\ \sim 0.0070$	18µm

2.1.3 プリントダイポールの外観および寸法

試作したプリントダイポールアンテナの中心周 波数は、無線 LAN などで利用されている 2.4GHz とした。図2にプリントダイポールアンテナの外 観、図3にそれぞれの寸法を示す。

図 2 プリントダイポールアンテナ外観 上段:表面、下段:接地導体面 左から、ガラスエポキシ、フッ素樹脂、高誘電率 PPO

2.2 MSAの小形化

2.2.1 MSAの設計

通常の両端開放型の方形 MSA の放射素子サイ ズは 1/2 波長かそれ以下である 13)。また、方形 MSA の放射素子サイズは次式を用いて求めるこ とができる 14)。

$$f_r = \frac{V_0}{2a\sqrt{\varepsilon_r}}$$

$$f_r : 共振周波数$$

$$v_0 : 光 速$$

$$a : 素 子 辺 長$$

$$\varepsilon_r : 比 誘 電 率$$

速

MSA の小形化は、放射素子の零電位面を短絡 し 1/4 波長系方形 MSA とすることができ、ま た、放射素子の幅を狭めることで、より小形化が 可能になることが知られている¹⁵⁾。

MSA への給電方法は、代表的なものに背面給 電方式、共平面給電方式、電磁結合給電方式があ る¹⁶⁾。今回は MSL を用いた共平面給電方式とし た。また、基板サイズを放射素子端部から 10mm 程度の大きさとしたため、1/4 波長インピーダン ス変換器を設けることができないので、切り込み によるインピーダンス整合を行った。以上までを 図4に示す。

左:両端開放型 1/2 波長 MSA、右:片側短絡型 1/4 波長 MSA 零電位面を接地導体に短絡することで、1/4 波長系の MSA となる。

2.2.2 プリント基板材料

高周波特性に優れたフッ素樹脂基板材料を使用 した。表2に使用した基板材料の特性を示す。

表2 使用基板材料(1MHz、カタログ値)

基板材料	基板厚	比誘電率	誘電正接	銅箔厚
フッ素樹脂	1.6mm	2.62	0.0005	35µm

2.2.3 MSA の外観および寸法

MSA の中心周波数は、無線 LAN などで利用さ れている 2.4GHz とした。試作した MSA は表 3 に示す4形状である。

以降は、簡略のため形状ごとに A~D のタイプ で表記する。

図5にMSAの外観、図6に寸法を示す。

表 3 MSA の形状

タイプ	形状	面積比(A=1)
А	両端開放型 1/2 波長	1
В	片側短絡型 1/4 波長	A の 1/2
C	片側短絡型 1/4 波長	B 𝒪 1/2
D	短絡面制御型 1/4 波長	B 𝒫 1/2

(左上:A、左下:B、右上C、右下:D)

2.3 プリントダイポール八木・宇田アンテナ

2.3.1 プリントダイポール八木・宇田アンテナの 設計

八木・宇田アンテナは放射器と無給電素子の反 射器および導波器の組み合わせで単一指向性をも つアンテナとなる¹⁷⁾。利得をあげるには導波器 の数を増やせばよいことが知られている¹⁸⁾。プ リントダイポールアンテナの MSL 部分の接地導 体を八木・宇田アンテナの反射器とし、導波器を 追加し高利得化を行った。導波器は片面のみに配 置した。導波器を追加することによりプリントダ イポールアンテナの入力インピーダンスが変化す るが、入力インピーダンスを純抵抗とするには放 射素子の長さを調整し¹⁹⁾、バランの 1/4 波長イン ピーダンス変換器の特性インピーダンスを調整し てインピーダンス整合を行った。

2.3.2 プリント基板材料

一般的なプリント基板材料であるガラスエポキ シ基板材料を使用した。表4に使用した基板材料 の特性を示す。

表 4 使用基板材料(1M	Hz、カタログ値)
---------------	-----------

基板材料	基板厚	比誘電率	誘電正接	銅箔厚
ガラスエポキシ	1.6mm	$\begin{array}{c} 4.5 \\ \sim 4.9 \end{array}$	$0.013 \\ \sim 0.020$	35µm

2.3.3 プリントダイポール八木・宇田アンテナの 外観および寸法

プリントダイポール八木・宇田アンテナの中心 周波数は、無線 IC タグ(RFID: Radio Frequency IDentification) などで利用される 950MHz とし た。図7にプリントダイポール八木・宇田アンテ ナの外観、図8にそれぞれの寸法を示す。

図7 プリントダイポール八木・宇田アンテナ外観 (左より2素子、3素子、4素子、5素子)

図 8 プリントダイポール八木・宇田アンテナ寸法 左上:2素子、右上:3素子、左下:4素子、右下:5素子 基板サイズは150×320 (単位:mm)

3 結果及び考察

3.1 プリントダイポールアンテナの特性

3.1.1 リターンロス特性および放射パターン

図9にリターンロス特性を示す。中心周波数の ずれは、ダイポールアンテナ素子の長さとバラン の幅により調整可能と考える。

図 10 に放射パターンを示す。半波長ダイポー ルアンテナの放射指向性に比べ、接地導体の影響 で一方向へよせられ単一指向性の放射パターンと なっている。しかし、基板材料による著しい違い はなかった。

図 10 放射パターン(赤:E面、緑:H面) 左上:ガラスエポキシ、右上:フッ素樹脂、左下:高誘電率 PP0

表5に各基板材料での帯域幅と利得を示す。帯 域幅は材料の比誘電率が大きくなると狭くなる傾 向がある。しかし、利得は基板材料による影響が 少ないことがわった。

表5 基板材料による帯域幅と利得

基板材料	帯域幅 (MHz) (VSWR≦2)	利得 (dBi)	中心周波数 (GHz)
ガラスエポキシ	382.5	6.9	2.425
フッ素樹脂	484.5	6.8	2.445
高誘電率 PPO	320.1	6.0	2.375

3.2 マイクロストリップアンテナの小形化

3.2.1 リターンロス特性および放射パターン

図 11 にリターンロス特性を示す。小形化する ほど中心周波数が高くなっているが、放射素子の 長さを調整することで目標の周波数にあわせるこ とは可能と考える。C と D では、短絡面の幅を 変えている。短絡面の幅を小さくすることにより 共振周波数を下げ、小形化できる²⁰⁾が、実測に おいても同じ傾向が得られた。

図 12 に放射パターンを示す。どの MSA も単 一指向性の放射パターンが得られた。A に比べ て、B, C, D の放射パターンが広がっているの は、片側短絡型 MSA の特性²¹⁾である。

図 12 放射パターン(赤:E面、緑:H面) 左上:A、左下:B、右上:C、右下:D

表 6 に各 MSA の帯域幅と利得を示す。アンテ ナの小形化により、帯域幅が狭くなることが知ら れているが²²⁾²³⁾、表 6 においても同じ傾向が得ら れた。利得に関しては、放射源である放射素子面 積が半分になるごとに利得も半分(-3dB)となる²⁴⁾ が、表 6 からも、A に対して B の利得は 3dB 小 さな値となった。C および D においては、放射 素子が B の面積の半分であるが、B の利得の 3dB 小さな 0.8dBi にはならなかった。

これは、全ての方向に一様に電波を放射する等 方性(isotropic)アンテナ²⁵⁾のような、損失のない 無指向性の場合の利得が 0dBi であるが、接地導 体の影響で放射パターンは単一指向性となり、そ の結果 2 ~3dBi の利得が得られているものと考 えられる。

タイプ	帯域幅 (MHz) (VSWR≦2)	利得 (dBi)	中心周波数 (GHz)
Α	32.1	6.8	2.425
В	20.2	3.8	2.463
С	12.8	2.9	2.483
D	13.2	3.1	2.478

表6 放射素子面積による帯域幅と利得

3.3 プリントダイポール八木・宇田アンテナ3.3.1 リターンロス特性および放射パターン

図13にリターンロス特性、図14に放射パターン を示す。図13より導波器を配置すると、リターン ロス特性が急峻になっているのがわかる。

また、図14では、導波器を増やすごとに放射パ ターンのメインローブが鋭くなり、また、4素子、 5素子においては、サイドローブが発生している。

多素子八木・宇田アンテナでは素子間隔を広く とるとメインローブが鋭くなるが、サイドローブ も大きくなることが知られている²⁶⁾。

今回は、できるだけ利得を大きくすることを目 的としたため、素子間隔が広くなりサイドローブ が大きくなったと思われる。

図14 放射パターン(赤:E面、緑:H面) 左上:2素子、右上:3素子、左下:4素子、右下:5素子

表7 素子数による帯域幅と利得

素子数	帯域幅 (MHz) (VSWR≦2)	利得 (dBi)	利得増加分 (dB)
2	88.9	6.7	1.6
3	46.6	8.3	
4	73.6	9.9	1.6
5	43.0	11.4	1.5

表7に示すとおり、素子数を増やすと帯域幅は 減少するが、利得は増加する。また、導波器1本 ごとに利得の増加は1.5dB程度得られた。

しかし、導波器1本増やすことによる利得の増加量は、導波器の本数が増えるごとに減少し、導波器の位置や長さの調整が複雑となるので、実用上取りうる利得は半波長アンテナに比べ14dB程度といわれている²⁷⁾。

4 まとめ

今回の研究では、試作したアンテナの測定を行 い以下のことを得た。

(1) プリントダイポールアンテナ

プリントダイポールアンテナでは、異なる基板 材料でも利得に対する影響は小さい。また、接地 導体の影響で単一指向性となり、半波長ダイポー ルアンテナに比べて利得が大きくなるのがわかっ た。

(2) マイクロストリップアンテナの小形化

MSA の小形化により、帯域幅と利得が減少す ることを、実験より確認した。また、小形化によ り利得が小さくなるが、接地導体により単一指向 性が得られ、MSA の損失が少なければ、その結 果利得が 2~3dBi となることがわかった。

(3) プリントダイポール八木・宇田アンテナ

ー般的なプリント基板材料であるガラスエポキ シ基板を用い、プリントダイポールアンテナと導 波器を組み合わせて、八木・宇田アンテナとする ことで利得を増加できることがわかった。

謝 辞

本研究を進めるに当たり、御指導いただきまし た埼玉大学の羽石操教授に心より感謝の意を表し ます。

参考文献

- 1) 無線データ通信の基礎と RF 部品活用法, CQ 出版, (2003)169
- 2) アンテナ工学ハンドブック,オーム社,(1999)2
- 3) アンテナ工学ハンドブック,オーム社,(1999)42
- 4) アンテナ工学ハンドブック,オーム社, (1999)109
- 5) アンテナ工学ハンドブック,オーム社,(1999)116
- 6) 虫明康人:アンテナ・電波伝搬,コロナ社, (2002)48
- 7) アンテナ工学ハンドブック,オーム社, (1999)242
- 8) アンテナ工学ハンドブック,オーム社, (1999)242
- (2003)409
 (2003)409
- 森英二:マイクロウェーブ技術入門講座[基礎編], CQ出版, (2003)425

- 11) アンテナ工学ハンドブック,オーム社, (1999)239
- 12) 広畑 敦:高周波技術センスアップ101, CQ 出版, (2003)85
- 13) 羽石 操, 平澤一紘, 鈴木康夫:小形·平面アンテナ,
 (社)電子情報通信学会, (1998)80
- 14) 羽石 操, 平澤一紘, 鈴木康夫:小形・平面アンテナ,
 (社)電子情報通信学会, (1998)94
- 15) 羽石 操,平澤一紘,鈴木康夫:小形・平面アンテナ,
 (社)電子情報通信学会, (1998)133
- 16) 羽石 操, 平澤一紘, 鈴木康夫:小形・平面アンテナ,
 (社)電子情報通信学会, (1998)81
- 17) アンテナ工学ハンドブック,オーム社, (1999)118
- 18) 虫明康人:アンテナ・電波伝搬,コロナ社, (2002)78
- 19) 虫明康人:アンテナ・電波伝搬,コロナ社, (2002)78
- 20) 羽石 操, 平澤一紘, 鈴木康夫:小形·平面アンテナ,
 (社)電子情報通信学会, (1998)137
- 21) 羽石 操, 平澤一紘, 鈴木康夫:小形·平面アンテナ,(社)電子情報通信学会, (1998)135
- 22) 小暮裕明:電磁界シミュレータで学ぶワイヤレスの世界, CQ 出版, (2001)102
- 23) 羽石 操, 平澤一紘, 鈴木康夫:小形・平面アンテナ,(社)電子情報通信学会, (1998)135
- 24) 小暮裕明:電磁界シミュレータで学ぶワイヤレスの世界, CQ 出版, (2001)111
- 25) アンテナ工学ハンドブック,オーム社, (1999)28
- 26) アンテナ工学ハンドブック,オーム社, (1999)119
- 27) 虫明康人:アンテナ・電波伝搬,コロナ社, (2002)78